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Background

The unidimensional item response theory (IRT) models have the advantage of being

mathematically fairly simple. Yet, it is likely that the actual interactions between examinees and

test items are not as simple as is implied by the unidimensional IRT models. The

multidimensional nature of tests has been a concern to measurement professionals since early

eighties (e.g., Ansley & Forsyth, 1985). Examinees are likely to rely on more than a single

ability answering a particular test question, and sometimes the test questions require a

combination of a number of skills or abilities to determine a correct solution. Multidimensional

IRT (MIRT) applications are not commonly used in modeling and scoring test data, primarily

because MIRT applications require a great deal of item response data to adequately estimate item

and person parameters. However, using unidimensional IRT models sacrifices information about

the trait levels of examinees (Miller & Hirsh, 1992).

There are two general approaches in the literature that have proposed making better use

of information provided by all test items, which is not used in conventional IRT applications, to

increase subscore reliabilities: test level and item level information augmentation.

The test score level approach uses an empirical Bayes procedure in combination with IRT

to adjust unstable subscores. Yen (1987) developed "objective performance index" (OPI) that

can be used to provide reliable subscores with diagnostic value. An examinee's overall test

performance is used as a priori to adjust subscale scores. Wainer, Sheehan, and Wang (2000)

presented a similar procedure that differed from the Yen's procedure by assuming a normal

distribution instead of a binominal distribution for the total test score and allowing subscores to
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be used instead of the total test score in stabilizing subscale scores. The subscale score,

however, is not independent from the total test score with the Bayesian procedures.

The item level approach is based on fitting IRT models to response data with reference to

a composite trait at a time, which is defined by the items composing a subscale. Luecht and

Miller (1992) demonstrated that it was possible to retain multidimensional interpretations of

composite traits, even though test calibrations are conveniently unidimensional. The common

problem of assuming unidimensionality for an entire test is avoided by restricting that

assumption to items shown to directionally cluster together in multidimensional space.

Ackerman and Davey (1991) illustrated how collateral information, information that items

provide for a correlated trait, to improve ability estimates in Computer Adaptive Testing (CAT).

Davey and Hirsh (1991) designed a simulation study to compare concurrent and consecutive

parameter estimation procedures. The conventional parameter estimates were referred as to

concurrent parameter estimates, and the proposed parameter estimates referred as to consecutive

parameter estimates. Consecutive parameter estimation involved calibrating items with respect

to both a primary trait and a non-primary trait. Associated estimation bias and standard error

estimates were reported as well as the performance of consecutive parameter estimates in

identifying unusual examinees.

Both approaches are reported to increase subscore reliabilities with the expense of some

bias: extreme scores were pooled toward the average ability score. The bias component in the

out-of-scale information is independent from the ability domain measured by a subscale, unlike

the OPI procedure where the total test score is dependent on the ability domain measured by the
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subscale. The authors, however, agreed on that the bias involved in the estimates is

compensated with the increase observed in the reliabilities of subscores that might not be

reported otherwise.

This study purposed to extent on current literature and investigated specific conditions

under which out-of-scale information improves measurement precision, and to determine the

factors that influence both the degree of reliability gains and the amount of bias induced in the

reported scores when out of scale information is used. Proposed methodology in this study

provides means for analyzing the expected contribution of out-of-scale information that can be

used to increase the number of scores for diagnostic purposes without increasing the number of

items or testing. This study used the composite traits approach that allows obtaining item

parameter estimates for an item on a non-primary but related trait composite by projecting that

item as a vector onto the non-primary trait composite. It was expected that the higher the

correlation between two score composites the greater would be the benefit from using out-of-

scale information.

The expected increase in bias is a potential drawback using out-of-scale information to

increase precision of test scores. The bias, the difference between estimated and true ability

estimates, is expected to increase some degree due to included secondary information source

(Davey & Hirsh, 1991). The ultimate aim is to delineate conditions under which the

hypothesized increase in the information provided for examinees compensates for the expected

bias introduced to the scoring procedure.
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Geometrical Representation of In- and Out-of-Scale Parameters

In most cases, items are classified to measure a single trait or trait composite even though

they measure more than one content domain or trait at a time. providing some bonus

information. If this bonus information is with reference to a trait that we want to report scores, it

can be incorporated into the scoring procedure, and may result reliable scores that may not be

reported otherwise. For example, science items may have a strong math component. We can use

the available information in the response data by letting these items contribute to the science

score as well as the math score. Furthermore, items that discriminate among examinees in a

narrow content domain can be used to stabilize subscores for other narrow content domains

within a single test. For example, Algebra items in a math test can be used to increase the

reliability of the Geometry subscale score as long as those math items discriminate among

examinees in the measured Geometry domain.

Science item 1

Science Composite

I Science Item 2

Math Composite

Figure 1 Projections item vectors onto composites being measured

The solid arrows in Figure 1 represents two science items as vectors in a two-dimensional space

formed by the science and math. The direction of the item vector indicates the direction in space
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the item best measures, while the length of the vector indicates how discriminating the item is

in that direction of the space. Interpreted geometrically, an item discriminates with respect to a

composite proportionally to the length of its projection on that composite. The dashed lines in the

figure show how the discriminations of the two science items diminish when they are projected

onto the math composite.

Methods

As mentioned earlier, two types of information that an item can provide are

distinguished: In-scale and out-of-scale. In-scale information is defined as information that an

item provides for a composite trait to which it is specifically classified by a content review. Out-

of-scale information is defined as information that an item provides for a composite trait other

than the composite to which it is specifically classified. Computer simulated two-dimensional

data was used to investigate the effects of various factors on the precision of reported scores

computed with and without out-of-scale information. A variety of testing conditions were

specified to compare the performance of the traditional information computation method, (in-

scale information alone) and the proposed alternative information computation method (in- and

out-of-scale information together). Factors investigated were (a) test length, (b) the magnitude of

item discrimination, and (c) the degree of association between pairs of traits.

Evaluation criteria were information provided and indices of estimation errors: standard

error (SE), bias, and root mean squared error (RMSE). These criteria were chosen to evaluate the

precision of reported ability estimates or scores that may lead one to choose the in- and out-of-

scale information computation method over the in-scale information computation method in

practical assessment situations. Factors and evaluation criteria used are described below in detail.
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Information Computation Methods

Two information computation methods are defined: Method A and Method B. Method A

uses information provided by only in-scale items, while Method B uses information provided by

both in- and out-of-scale items in computing evaluation criteria indices for examinees at their

true ability levels. It is hypothesized that the information provided for examinees would increase

when Method B is used. It is also hypothesized that information increase would become greater

with Method B when there is a stronger association between the in- and out-of-scale traits.

Modeling Multidimensional Response Data

A test battery was simulated to model two-dimensional (2-D) response data for

examinees from a multivariate normal distribution. The battery consisted of two tests each

measuring a single trait (or a trait composite). The proposed procedure is expected to be more

beneficial when data at hand include examinee responses to more than two tests, allowing

simultaneous inferences to be made. However, the challenge faced is in the complexity of

controlling response data when the number of dimensions is more than two. Response data for a

two-test battery was modeled in this study. The response data included examinees' responses to

two content domain scales. The two-test battery composite measures are given generic names for

convenience and to as math and science.

Factors to be investigated

Two factors to be kept constant in this study were examinee sample size as 1000 and

multidimensional structure of the response data as two-dimensional across all conditions.
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Test Length

Two test battery lengths are included: a 30-item battery composed of two 15-item

subtests and a 60-item battery composed of two 30-item subtests. Test length was varied to

evaluate the relationship between the hypothesized increase in the information provided and the

number of items included in the battery.

Item Discrimination Power

Item discrimination parameters were varied in generating the response data for the in-

scale three-parameter logistic (3PL) item parameters of the fitted MT model resulting in a high-

discrimination ideal test battery and a moderate-discriminating test battery. It was expected that

the precision increase would be greater for the high-discrimination condition, since information

provided by an item is primarily a function of its discrimination parameter.

The overall means of the difficulty, discrimination, and pseudo-guessing parameter

values were selected to be 0.00, 1.00, and 0.15, respectively for the moderate-discrimination

condition. The item discrimination parameters of the moderate-discrimination battery were

drawn from a normal distribution with a mean of 1.00 and standard deviation (SD) of 0.10. Only

the overall mean of the item discrimination parameter value was changed for the high-

discrimination condition and set as 1.80. The item discrimination parameters of the high-

discrimination battery were drawn from a normal distribution with a mean of 1.80 and standard

deviation (SD) of 0.10. The value 1.80 was selected to be the mean of item discrimination

parameter in the high-discriminating test battery.
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Table 1 Summary Statistics for the Item Parameters of the 30-ItemiLatilat_r_saltsa.
Battery/Parameter Number of Items Mean SD MM. Max
Moderate-discriminating test battery
Math
a' 15 0.9759 0.0936 0.7807 1.1086
bb 15 0.0004 1.5974 -2.5008 2.5000
cc 15 0.1500 0.0000 0.1500 0.1500
Science
a 15 0.9667 0.1058 0.7804 1.1010

15 0.0004 1.5974 -2.5008 2.5000
15 0.1500 0.0000 0.1500 0.1500

High-discriminating test battery
Math
a 15 1.7856 0.0974 1.5852 1.9491

15 0.0004 1.5974 -2.5008 2.5000
15 0.1500 0.0000 0.1500 0.1500

Science
a 15 1.7652 0.0923 1.5785 1.9598

15 0.0004 1.5974 -2.5008 2.5000
15 0.1500 0.0000 0.1500 0.1500

Table 2.Summary Statistics for the Item Parameters of the 60-Item (Long) Test-Battery
Battery/Parameter Number of Items Mean SD Min. Max
Moderate-discriminating test battery
Math
aa 30 1.0281 0.1322 0.8447 1.2659
bb 30 -0.0012 1.5186 -2.5025 2.5000
cc 30 0.1500 0.0000 0.1500 0.1500
Science
a 30 0.9958 0.1069 0.8662 1.1806

30 -0.0012 1.5186 -2.5025 2.5000
30 0.1500 0.0000 0.1500 0.1500

High-discriminating test battery
Math
a 30 1.7919 0.0967 1.6295 1.9987

30 -0.0012 1.5186 -2.5025 2.5000
30 0.1500 0.0000 0.1500 0.1500

Science
a 30 1.7969 0.1208 1.5973 2.0243

30 -0.0012 1.5186 -2.5025 2.5000
30 0.1500 0.0000 0.1500 0.1500

Note. The pseudo-guessing parameter values were fixed at 0.15
'Item discrimination parameter value
bItem difficulty parameter value
cItem pseudo-guessing parameter value
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The item difficulty parameters for both conditions were equally spaced values from the

interval between 2.5 and 2.5. Summary statistics of the item parameters generated in the short

test length and the long test length condition are summarized in Table 1 and Table 2 for both

moderate- and high-discrimination test batteries.

Trait Composite Correlations

It was hypothesized that the increment of information in Method B, the in- and out-of-

scale information computation method would increase as the correlation between the two traits

involved increase. This hypothesis was evaluated by varying the correlations between two trait

composites in generating response data forming five conditions: 0.10, 0.30, 0.50, 0.70, and 0.90.

Simulation

The RESGEN computer program (Muraki, 1992) was used to generate 2-D test battery

response data for 1000 examinees sampled from a multivariate normal distribution. Response

data were generated for a total of twenty conditions (2 test length X 2 item discrimination X 5

correlation conditions). The multidimensionality in response data was modeled as a complex

two-dimensional structure where each item had two discriminating parameters, one item

discrimination parameter for each trait measured.

True ability parameters and true item parameters were fixed across replications, and a

randomly selected seed number was used for each replication.

Item Calibration

In-scale and out-of-scale item parameters were estimated using the BlELOG (Mislevy &

Bock, 1990) and the PIC (Davey & S'pray, 1999) computer programs fitting the 3PL IRT model

to each test. The probability of a correct response in the 3PL model is given by
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p1(0).c.,+(-c,)[1+e-Dai(o-b,)I, (1)

where , is the item administered, a, is the discrimination, b, is the difficulty, and c, is the pseudo-

guessing parameter of item D is the scaling constant 1.702 and P, (.) is the 3PL model

probability of a correct answer for the ith item for an examinee with ability 9 (Hambleton &

Swaminathan, 1985).

PIC uses the method of maximum likelihood to calibrate out-of-scale items one at a time

for a composite trait. The in-scale item parameters are held constant in every PIC run to fix the

scale, and out-of-scale items are calibrated individually, as the presence of other out-of-scale

items would contaminate the scale. For example, out-of-scale parameters of math items were

calibrated one at a time with respect to the Science composite, which was defined by all the

items in the science test, holding estimated science in-scale item parameters constant. Each item

in the two-test battery had two sets of parameters: one in-scale and one out-of-scale.

Evaluation Criteria

Indices of estimation errors (RMSE, SE and bias) were calculated for each examinee at

his/her true ability using both methods. The average Information provided for each simulee was

computed over 20 replications under each condition. Descriptive statistics were provided for 24

ability intervals on true ability or theta scale with the increments of 0.2.
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Information

Two information functions were computed for each item: one for Method A and one for

Method B by

1(9

, 2

(p
P Q,,

(2)

where P, is the 3PL model probability of a correct answer for the ith item for jth examinee with

ability 0, P', is the second derivative ofPi. Equation 2 is estimated by

where,

1(19)= D2 af Pi Qi

p (9)- cp (69= " .1- c,

(3)

(4)

For example, each math item had two information functions in the two-test battery, one with

respect to the math composite, in-scale, and one with respect to the science composite, out-of-

scale.

Total information provided for jth examinee with ability Of was computed by

12
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where , is the item administered, P, is the three-parameter logistic (3PL) model probability of a

correct answer for the ith item for jth examinee with ability 0, P', is the second derivative of P

and I(e) is information provided for the jth examinee at its true ability by summing the

information provided by i=(1,...,n) items (Hambleton & Swaminathan,1985).

In method A, the total information were computed for each examinee's true math and

science ability levels by summing the information provided by in-scale items in the test battery.

In method B, the total information were computed for each examinee's true math and science

ability levels by summing the information provided by all (in- and out-of-scale items) the items

in the test battery. There were 15 items in the short test-battery and 30 items in the long test-

battery to be summed over for Method A. While, there were 30 items in the short test-battery and

60 items in the long test-battery to be summed over for Method B.

Analysis

Ability estimates and information provided for examinees, and indices of ability

estimation errors were compared for Method A and Method B along the ability scale. The

stability of the study results across conditions were assessed across conditions for replications,

which are 20 in this study. The root mean square error (RMSE) were computed across conditions

for the ability estimates obtained with (Method B) and without (Method A) out-of-scale

information. Bias, SE, and RMSE were computed for each examinee using these formulas:

1Bias0 \ L
N A
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SE 9 )=

RAISE ).

N 1

(

A

N A

E;=,

2

1
A

N 1 j
(7)

(8)

where, 0 is the true ability, estimatedg is the ability estimate for the jth replication, and N is the

number of replications, which is 20 in this study. The RMSE2 is an index of parameter recovery

composed of two parts, one reflecting the variance (SE2) of the estimates and the other reflecting

the bias (BIAS2) in estimation (Gifford & Swaminathan, 1990; Wang & Vispoel, 1999). When

the estimated SE is small it suggests that random error in ability estimates are small. When the

estimated bias is small it suggests that systematic error in ability estimates are small. Larger

RMSE values for any condition indicate that the procedure used is working poorly in terms of

recovering the true parameters over replications.

Results

Table 3 lists the conditions used. The mean conditional plots were provided for the math

subtest only, which were very similar to those of the science test as expected since only the

randomly selected item parameters were not identical for both tests.
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Estimating Ability

BILOG is used to obtain ability estimates for simulees for both methods. As mentioned in

earlier, unidimensional in-scale and out-of-scale item parameters were estimated by the

maximum likelihood estimator using the BILOG (Mislevy & Bock, 1990) and the PIC (Davey &

Spray, 1999) computer programs fitting the 3PL IRT model to each test.

In method A, BILOG was used to calibrate items (in-scale) and to obtain ability

estimates. In Method B, BILOG was provided a parameter file that included both BILOG

calibrated in-scale item parameters and PIC calibrated out-of-scale items to obtain ability

estimates. Even though any of the available estimation procedures could be used with BlILOG,

the expected a priori, (EAP) procedure was used to obtain ability estimates for conditions

studied.

Although the maximum likelihood, (ML), estimator is an unbiased estimate of the sample

standard deviation, unlike the EAP estimator, a well-known problem arises with the use of the

ML estimator when there are extreme response patterns, (i.e., all correct or incorrect responses),

that produce extreme ability estimates. For short tests, tests with less than 20 items, the

probability of observing such problematic response patterns increases. The results are very large

ability estimate ranges, that is if a reasonable convergence level is reached for such response

patterns. The BILOG manual recommends the use of EAP procedure to obtain ability estimates

to refrain from such problematic cases when tests are composed of less than 20 items. This

recommendation is followed in this study since 10 of the total tests studied in 20 conditions had

two 15-item tests. The BILOG Manual states that in most applications the bias effect in EAP is

not apparent if the prior distributions are selected to be the same and ability distributions are put
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on a common scale. Ability estimates in the current study were obtained using EAP Bayesian

procedure using a normal prior distribution with a mean of zero and variance of 1. All ability

estimates were rescaled using BILOG with a mean of zero and variance of 1 for all conditions.

Table 3. Study Conditions and Factors
Math and

Science Test
Battery

Test length Average Item
Discrimination
for Both Tests

Math and
Science Trait
Correlation

Method A Method B

Conditions Math Science Math Science
Condition 1 15 15 30 30 Moderate 0.1

Condition 2 15 15 30 30 Moderate 0.3

Condition 3 15 15 30 30 Moderate 0.5

Condition 4 15 15 30 30 Moderate 0.7
Condition 5 15 15 30 30 Moderate 0.9
Condition 6 15 15 30 30 High 0.1

Condition 7 15 15 30 30 High 0.3

Condition 8 15 15 30 30 High 0.5

Condition 9 15 15 30 30 High 0.7
Condition 10 15 15 30 30 High 0.9

Condition 11 30 30 60 60 Moderate 0.1

Condition 12 30 30 60 60 Moderate 0.3

Condition 13 30 30 60 60 Moderate 0.5

Condition 14 30 30 60 60 Moderate 0.7
Condition 15 30 30 60 60 Moderate 0.9
Condition 16 30 30 60 60 High 0.1

Condition 17 30 30 60 60 High 0.3

Condition 18 30 30 60 60 High 0.5

Condition 19 30 30 60 60 High 0.7
Condition 20 30 30 60 60 High 0.9

Note: Test data were two dimensional for the 20 conditions.
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Information Provided

Table 4 shows the average information and the average estimated reliability for each test

using Method A and Method B under each condition.

The reliabilities of both subtest scores invariably increased when Method B (in- and out-

of-scale information procedure) was used. The reliability gain became greater as the correlation

between the math and science composites increased from 0.5 to 0.7 for both moderate and high

discrimination. Even though the increase was greater for moderately high to high correlation

conditions, the scales that most benefited from the gain were the short test-moderate

discrimination conditions and the long test-moderate discrimination conditions.

The reliability estimates of the short test conditions increased from approximately 0.65 to

0.72 when Method B was used for moderate discrimination (conditions 1-5), and from

approximately 0.89 to 0.90 for high discrimination conditions. The increase was capitalized

when the correlation between the math and science composites was 0.5 or greater (conditions 6-

10).

The reliability estimates of the long test conditions increased from 0.85s to 0.89s for

moderate discrimination conditions, and from 0.95s to 0.97s for high discrimination conditions

when the correlation between the math and science composites was 0.5 or greater (conditions 13-

15 and 18-20). However, the gain observed seems to be of practical use for short test-high

discrimination and long test-moderate discrimination conditions allowing an argument to be

made whether the associated subscale scores are reliable enough to report.
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Table 4. Avera e Information and Reliabilities over 20 Re lications

Condition
MATH TEST SCIENCE TEST

TRADITIONAL
METHOD

ALTERNATIVE
METHOD

TRADITIONAL
METHOD

ALTERNATIVE
METHOD

Statistic INFO SE REL INFO SE REL INFO SE REL INFO SE REL

1 Mean 2.780 0.360 0.640 2.898 0.346 0.654 2.697 0.371 0.629 2.822 0.355 0.645
Var 0.014 0.000 0.000 0.015 0.000 0.000 0.015 0.000 0.000 0.014 0.000 0.000

2 Mean 2.8498 0.352 0.648 3.077 0.326 0.674 2.667 0.376 0.624 2.908 0.345 0.655
Var 0.020 0.000 0.000 0.024 0.000 0.000 0.017 0.000 0.000 0.020 0.000 0.000

3 Mean 2.818 0.355 0.645 3.495 0.287 0.713 2.683 0.374 0.627 3.370 0.297 0.703
Var 0.013 0.000 0.000 0.021 0.000 0.000 0.015 0.000 0.000 0.022 0.000 0.000

4 Mean 2.818 0.355 0.645 3.495 0.287 0.713 2.683 0.374 0.627 3.370 0.297 0.703
Var 0.013 0.000 0.000 0.021 0.000 0.000 0.015 0.000 0.000 0.022 0.000 0.000

5 Mean 2.847 0.352 0.648 3.904 0.257 0.743 2.751 0.364 0.636 3.822 0.262 0.738
Var 0.022 0.000 0.000 0.031 0.000 0.000 0.015 0.000 0.000 0.022 0.000 0.000

6 Mean 9.876 0.101 0.899 9.984 0.100 0.900 9.219 0.109 0.891 9.334 0.107 0.893
Var 0.103 0.000 0.000 0.104 0.000 0.000 0.109 0.000 0.000 0.108 0.000 0.000

7 Mean 9.482 0.106 0.894 9.876 0.101 0.899 9.423 0.106 0.894 9.832 0.102 0.898
Var 0.173 0.000 0.000 0.181 0.000 0.000 0.167 0.000 0.000 0.175 0.000 0.000

8 Mean 9.560 0.105 0.895 10.600 0.094 0.906 9.232 0.108 0.892 10.219 0.098 0.902
Var 0.091 0.000 0.000 0.116 0.000 0.000 0.040 0.000 0.000 0.053 0.000 0.000

9 Mean 9.630 0.104 0.896 11.966 0.084 0.916 9.640 0.104 0.896 12.023 0.083 0.917
Var 0.110 0.000 0.000 0.129 0.000 0.000 0.050 0.000 0.000 0.056 0.000 0.000

10 Mean 9.311 0.108 0.892 13.873 0.072 0.928 9.304 0.108 0.892 13.894 0.072 0.928
Var 0.115 0.000 0.000 0.167 0.000 0.000 0.068 0.000 0.000 0.110 0.000 0.000

11 Mean 6.841 0.146 0.854 7.097 0.141 0.859 8.079 0.124 0.876 8.300 0.121 0.879
Var 0.044 0.000 0.000 0.046 0.000 0.000 0.054 0.000 0.000 0.055 0.000 0.000

12 Mean 6.902 0.145 0.855 7.507 0.133 0.867 8.155 0.123 0.877 8.745 0.114 0.886
Var 0.035 0.000 0.000 0.036 0.000 0.000 0.041 0.000 0.000 0.047 0.000 0.000

13 Mean 6.841 0.146 0.854 8.082 0.124 0.876 8.261 0.121 0.879 9.604 0.104 0.896
Var 0.043 0.000 0.000 0.051 0.000 0.000 0.047 0.000 0.000 0.068 0.000 0.000

14 Mean 6.830 0.147 0.853 9.072 0.110 0.890 8.278 0.121 0.879 10.792 0.093 0.907
' Var 0.033 0.000 0.000 0.042 0.000 0.000 0.031 0.000 0.000 0.048 0.000 0.000

15 Mean 6.861 0.146 0.854 10.760 0.093 0.907 8.464 0.118 0.882 12.962 0.077 0.923
Var 0.058 0.000 0.000 0.119 0.000 0.000 0.030 0.000 0.000 0.081 0.000 0.000

16 Mean 18.902 0.053 0.947 19.129 0.052 0.948 18.828 0.053 0.947 19.060 0.052 0.948
Var 0.231 0.000 0.000 0.237 0.000 0.000 0.143 0.000 0.000 0.141 0.000 0.000

17 Mean 19.380 0.052 0.948 20.229 0.049 0.951 19.647 0.051 0.949 20.473 0.049 0.951
Var 0.111 0.000 0.000 0.117 0.000 0.000 0.151 0.000 0.000 0.160 0.000 0.000

18 Mean 19.151 0.052 0.948 21.257 0.047 0.953 19.540 0.051 0.949 21.713 0.046 0.954
Var 0.147 0.000 0.000 0.204 0.000 0.000 0.138 0.000 0.000 0.165 0.000 0.000

19 Mean 19.386 0.052 0.948 24.347 0.041 0.959 19.165 0.052 0.948 24.244 0.041 0.959
Var 0.102 0.000 0.000 0.147 0.000 0.000 0.104 0.000 0.000 0.127 0.000 0.000

20 Mean 19.654 0.051 0.949 30.564 0.033 0.967 19.797 0.051 0.949 30.794 0.032 0.968
Var 0.151 0.000 0.000 0.304 0.000 0.000 0.138 0.000 0.000 0.296 0.000 0.000

Reliability = P (cre Cre ) ae , where a e = 1 / J I (0)g(0)d(0), and since it is assumed that
(4,2 = 1, p = 1 - ae2
Method A and Method B information (INFO) for the Math test were plotted in Figure 4.
Numbers listed were rounded to three decimal places.
Figure 4 and Figure 5 plot the first colums of the tradirional method and alternative method for the math test.
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Figure 4. Information Provided for Examinees by the Math Test for the Short Test
Conditions
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Figure 5. Information Provided for Examinees by the Math Test for the Long Test
Conditions
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Figure 4 and 5 show the conditional mean information provided for the math subtest

using Method A and Method B for short test (1-10) and long test (11-20) conditions,

respectively. It was hypothesized that information provided for examinees would increase with

Method B, and stronger association between the in- and out-of-scale traits would contribute to

this increase. The results obtained confirmed this hypothesis.

The information increase with Method B was approximately 3%, 9%, 25%, 25%, and

39% for moderate discrimination-short test conditions, and increased in magnitude as the

correlation between math and science composites increased from 0.1 to 0.9. The information

increase with Method B was approximately 1%, 4%, 10%, 24%, and 49% for high

discrimination-short test conditions, also increased in magnitude as the correlation between math

and science composites increased from 0.1 to 0.9. However, the increase was smaller for lower

correlation conditions, conditions 1 through 3, than for high correlation conditions, conditions 4

and 5. A similar pattern was observed for long-test conditions, conditions 10-20, with the

exception that the information gain was greater in general. Information gain observed was 3%,

7%, 17%, 30%, and 55% for the moderate discrimination-long test conditions (conditions 11-15),

and 5%, 5%, 19%, 26%, and 55% for high-discrimination-long test conditions (conditions 16-

20).

Standard Error

Figure 6 and 7 show the conditional mean standard error (SE) plots for math ability at

short (1-10) and long test (11-20) conditions, respectively. These data reveal that Method B

constantly yields smaller standard error estimates overall across the theta scale. The difference is

most pronounced at moderate to high correlation conditions and for the long test conditions.
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The random error was observed to decrease as the test length increased regardless of the

information computation method used. The SEs showed that random measurement error was

greater with Method A than Method B for all conditions.

The SEs of the short-test moderate-discrimination conditions (conditions 1-6) were

smaller with Method B than with Method A across the theta scale. The SEs with Method B

became smaller as the correlation between math and science traits increased. The SEs of the

short-test high-discrimination conditions (conditions 6-10) were also smaller with Method B, and

became smaller as the correlation between math and science traits increased. However, Method

B SEs were relatively greater than Method B SEs at the upper and lower ends of the theta scale.

A similar pattern was observed under long test conditions (conditions 11-20) with an

increased discrepancy between Method A and Method B SEs. Results indicate that the decrease

observed in the SEs for the moderate discrimination test conditions is almost constant across the

theta scale for both short and long test conditions. With the high discrimination conditions,

results show that the increases in item discrimination are associated with decreases in SEs.

Furthermore, Method A SEs were relatively smaller than those of the Method B at the ends of

the theta scale, and the Method A SEs, and were greater than those of Method B at the mid theta

scale.
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Figure 6. The Standard Error of the Math Ability Estimates for the Short Test Conditions
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Figure 7. The Standard Error of the Math Ability Estimates for the for the Long Test
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Bias

Figure 8 and 9 show the conditional bias plots for the 10 short test (conditions 1-10) and

10 long test conditions (conditions 11-20) for the math test, respectively. These plots indicate

that the estimated bias did not show large discrepancies between the two Methods. The bias

estimates were relatively smaller (a) for the long test conditions than those of the short test

conditions, and (b) for the high discrimination conditions than those of the moderate

discrimination conditions. This difference became larger as the correlation level was increased.

The bias under the moderate-discrimination short-test condition was smaller with Method

B than it was with Method A when trait correlation was 0.7 and even smaller when trait

correlation was 0.9. This pattern was also emerged in the high discrimination-short test

conditions, however, lesser in degree. In the long test-moderate discrimination conditions, bias of

Method B was slightly greater for extreme ability levels, and was slightly smaller for middle

ability levels. In the long test-high discrimination conditions, bias of Method B was greater for

extreme ability levels, and was smaller for middle ability levels. The two methods yielded

similar estimated bias when the correlation between the two traits was 0.9. In the long-test high-

discrimination condition, the bias was smaller with Method B, and Method B performed better as

the trait correlation increased. The bias of the 0.1 correlation-long-test-high discrimination

condition, condition 16, was almost identical for both methods.

Overall, Method B bias became smaller when the correlation between math and science

traits was moderate to high, test items were highly discriminating, and test length was longer, in

this order. Method B bias was found to be slightly smaller than that of Method B when the trait

correlation increased as the ability level became extreme under all conditions.
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Figure 8. Estimated Bias of the Math Ability Estimates for the Short Test Conditions
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Figure 9. Estimated Bias of the Math Ability Estimates for the Long Test Conditions
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Somewhat contradictory to what was expected, ability estimates with Method B were

only slightly more biased than those with Method A in general. One possible explanation is that

the using the EAP procedure with both Method A and Method B, instead of the ML, procedure

led to biased estimates for both methods.

Root Mean Square Error (RMSE)

As noted earlier, RMSE is a fiinction of both SE and bias (RMSE2=SE2+bias2).

Consequently, the results for RMSE are related to those already discussed for SE and bias.

Figure 10 and 11 show the conditional RMSEs for math ability at short-test conditions

(conditions 1-10) and long-test conditions (conditions 11-20), respectively. Short-test condition

RMSEs were found to be higher than those of the long-test conditions in general. The RMSEs

increased as the ability level of the examinee became extreme at both short and long-test

conditions, and this increase was greater at the high-discrimination conditions. This could be due

to observed higher bias in the high-discrimination conditions for extreme abilities.

The results indicate that the RMSEs of the short test-moderate discrimination conditions

were smaller with Method B than those with Method A as the correlation level increased. The

RMSEs of the Method B were the smallest when compared to those of Method A for condition 5,

where the math and the science trait correlation was 0.9. The RMSEs of the short test-high

discrimination conditions were slightly greater with Method B than with Method B for 0.3, 0.5,

and 0.7 correlation conditions.
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Figure 10. Estimated Root Mean Square Error (RMSE) of the Math Ability Estimates for
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Figure 11. Estimated Root Mean Square Error (RMSE) of the Math Ability Estimates for
the Long Test Conditions
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In the short test-high discrimination conditions, the RMSEs were greater with Method

B, and for extreme ability levels in general. However, when compared, Method B RMSEs were

smaller than Method A RMSEs for extreme ability levels. The only short test-high discrimination

condition with overall smaller Method B RMSEs was condition 10, where the math and the

science trait correlation was 0.9.

The RMSEs of the long test conditions (conditions 11-20) were greater for Method B in

general. Under the long test conditions, RMSEs were greater for Method B for 0.1, 0.3, and 0.5

correlation conditions for both moderate and high discrimination conditions. The RMSEs were

approximately the same for Method A and Method B for long-moderate and high discrimination

conditions when the trait correlation was 0.7. The RMSEs were smaller with Method B for 0.9

correlation condition only for both moderate and high discrimination conditions. The only short

test-high discrimination condition that resulted with overall smaller RMSEs for Method B was

condition 10, where the math and the science trait correlation was 0.9.

The RMSEs of the long test conditions (conditions 11-20) were greater for Method B in

general. Under the long test conditions, RMSEs were greater for Method B for 0.1, 0.3, and 0.5

correlation conditions for both moderate and high discrimination conditions. The RMSEs were

smaller with Method B for 0.9 correlation condition only for both moderate and high

discrimination conditions.

Summary

The finding for SE indicate that the random measurement error is more evident with the

Method A, the in-scale information method, than with the Method B. This SEs difference were

more prevalent conditions across the theta scale for the short test conditions. The only conditions
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were high discrimination-moderate correlation conditions where SEs with Method B were

greater than those with Method A only for extreme ability levels.

The results for bias show that ability estimates at high and low theta levels are pulled

toward the mean (pulled inward) with both methods. This inward bias was expected since the

EAP Bayesian procedure was used in obtaining ability estimates. The results indicate that

Method A and Method B bias did not differ for the short test conditions with the only exception

of 0.9 correlation conditions. The biases were smaller for Method B for moderate and high

discrimination conditions with 0.9 trait correlation (conditions 5 and 10). Method B bias also did

not differ from the Method A bias for long test-moderate discrimination conditions (conditions

11-15). The bias associated with Method B ability estimates were smaller for the extreme ability

levels and greater for middle range ability levels for long test-high discrimination conditions,

more so when the correlation between the two traits increased.

The RMSEs reflecting the combined effects of SEs and Bias were smaller with Method B

for moderate discrimination conditions only when the math and science trait correlation was 0.7

and became smaller when the math and science trait correlation was 0.9 for both short and long

test conditions. However, the Method B RMSEs of the high discrimination conditions were

greater with 0.1, 0.3, and 0.5. The discrepancy almost disappeared as the trait correlation was

increased to 0.7. At 0.9 correlation level, Method B RMSEs were smaller than those of Method

A. In sum, short test Method B RMSEs were very similar to those of Method A, and become

smaller than Method A RMSEs as the correlation level increased from 0.5 to 0.7, and 0.7 to 0.9.

In the short test conditions, Method B RMSEs were smaller than those of Method A for

the moderate discrimination condition. In the long-test conditions, Method B RMSEs were
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greater than those of Method A for moderate discrimination conditions. The discrepancy

dissapeared as the correlation level increased to 0.7, and the RMSEs of Method B became

smaller as the correlation level increased to 0.9. The Method B RMSEs were approximately the

same with the Method A RMSEs in the long test-high discrimination conditions. However, with

increasing correlation level Method B RMSEs were smaller than Method A RMSEs. This was

most pronounced with 0.9 correlation level.

The performance of Method A and Method B RMSEs in the long test-high discrimination

conditions was different across the theta scale. Method B RMSEs were smaller than Method A

RMSEs for the mid ability range, and were smaller than Method A RMSEs for the extreme

ability range. The decrease in Method B RMSEs relative to the Method A RMSEs was also

observed at the extreme ability range. That is, as the correlation level increased to 0.9 Method B

not only performed better than Method A in the mid ability range but also at the extreme ability

range. The RMSEs computed for the long test conditions required higher trait correlation to

recover true ability parameters, than those for the short test conditions. That is, when short and

long test moderate discrimination conditions are compared, short RMSEs were smaller with

Method B.

Discussion

One of the most important tasks facing measurement specialists is an increasing demand

from stakeholders that large-scale assessments should provide more test-scores that can be used

for diagnostic purposes. However, it is rare to have enough items in a test battery to report

content specific scores within subtests with an acceptable level of reliability. Increasing the

number of items per sub-content domain is not an attractive solution for both test-developers and
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test-takers. An alternative is to investigate procedures that would make use of already available

information in the response data.

This study was conducted to evaluate the expected increase in the reliabilities of

subscale scores when all items composing a test battery are allowed to contribute the subscale

score to the extent that they retain discrimination power with respect to the trait intended to be

measured by these subscales.

The choice between the in-scale, Method A, and in- and out-of-scale, Method B,

procedures would seem to depend primarily on SE and bias. The SEs were found to be

constantly smaller with the in- and out-of-scale information method than with the in-scale

information method, favoring the out of-scale information method. If the purpose is to rank order

examinees according the composite trait measured, bias will be lesser of concern than SE or

random error, since bias will not effect the rank order of examinees with respect to a trait as long

as the bias is monotonically related to the ability estimates. Wang and Vispoel (1998) listed three

situations where bias is more important than SE as in comparing group means, in referencing

ability estimates from different tests, and making mastery/non-mastery or other classification

decisions. In such cases Method B

It was shown that the in- and out-of-scale information procedure increased the reliability

of the subscale scores without increasing the number of test items when traits measured are

moderately or higly correlated. The out-of-scale information method performed better (smaller

SEs and RMSEs) with the short test-moderate discrimination conditions when compared to the

in-scale information method as the correlation between the traits measured increased. This

finding is likely to make the alternative information computation method more attractive to the
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users because tests in practice are likely to be comprised of moderately discriminating items

and the domain scales that need precision increases are usually short tests, i.e., tests with less

than 20 items. Using out-of-scale information is likely to produce reliable subscores that can be

used for diagnostic purposes, where examinees performance repertoire can be decried in terms of

what the examinee can and can not do.
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